Bismuth has been known since ancient times, so no one person is credited with its discovery. The element was confused in early times with tin and lead because of its resemblance to those elements. In 1753, French chemist Claude François Geoffroy demonstrated that this metal is distinct from lead and tin.
El bismuto es uno de los primeros 10 metales que fueron descubiertos, ya conocido desde la antigüedad, por lo que a ninguna persona se le atribuye su descubrimiento. El elemento se confundió en los primeros tiempos con el estaño y el plomo, debido a su parecido con esos elementos. Claude François Geoffroy demostró en 1753 que este metal era distinto del plomo y del estaño.
Polonium was discovered by Marie and Pierre Curie in 1898 in Paris. This element was the first one discovered by the Curies while they were investigating the cause of pitchblende radioactivity. The dangers of working with radioactive elements were not known when the Curies made their discoveries.
El polonio fue descubierto por Marie Curie-Skłodowska y Pierre Curie en 1898. Fue el 1º elemento descubierto por el matrimonio Curie mientras investigaban las causas de la radiactividad de la pechblenda. La pechblenda, tras eliminar el uranio y el radio, era incluso más radiactiva que estos elementos juntos. Esto les llevó a encontrar el nuevo elemento.
In 1869, existence of astatine was first predicted by Russian chemist Dmitri Mendeleev and called the element eka-iodine. In 1940, Dale R. Corson, Kenneth Ross MacKenzie, and Emilio Segrè isolated the element at the University of California, Berkeley. Instead of searching for the element in nature, the scientists created it by bombarding bismuth-209 with alpha particles.
Fue producido artificialmente en 1940, en el Instituto Politécnico de Alabama, mediante bombardeo de bismuto con partículas alfa de alta energía por D.R. Carson, K.R. MacKenzie y E. Segre. El primer isótopo sintetizado fue el <sup>211</sup>At. Posteriormente se produjeron otros isótopos del astato, con números másicos entre el 200 y el 219, teniendo algunos de ellos una vida media de fracciones de segundo.
Radon was discovered in 1900 by Friedrich Ernst Dorn in Halle, Germany. He reported some experiments in which he noticed that radium compounds emanate a radioactive gas. In 1910, Sir William Ramsay and Robert Whytlaw-Gray isolated radon, determined its density, and determined that it was the heaviest known gas.
El elemento fue descubierto por el físico alemán Friedrich Ernst Dorn, quien en 1900 notó que esta peculiar sustancia era emitida por el radio (Ra) y así lo describió. En 1908 dos grandes químicos británicos lograron aislar dicha sustancia: el escocés Sir William Ramsay y el químico inglés Robert Whytlaw Gray. Respecto a su nombre, en una primera instancia se le llamó simplemente emanación de radio, más tarde nitón y finalmente radón desde 1923.
Francium was discovered in 1939 by Marguerite Perey of the Curie Institute in Paris, France. It was discovered when she was researching the radioactive decay of actinium-227. Marguerite Perey discovered that francium-223 is made naturally when actinium-227 emits an alpha-particle.
Ya en 1870, los químicos pensaban que debía existir un metal alcalino más allá del cesio, con un número atómico de 87. Se le denominaba con el nombre provisional de eka-cesio. El francio fue descubierto por Marguerite Catherine Perey, física francesa estudiante y asistente personal de la gran Marie Curie, tras la purificación de muestras de lantano (La) que contenían actinio (Ac) en 1939.
Radium was discovered by Marie Curie and Pierre Curie in 1898. They extracted the radium compound from a uraninite sample. Radium was isolated in its metallic state by Marie Curie and André-Louis Debierne in 1910 through the electrolysis of radium chloride by using a mercury cathode and distilling in an atmosphere of hydrogen gas.
El radio fue descubierto en 1898 por Marie Skłodowska-Curie y su marido Pierre en una variedad de uraninita del norte de Bohemia. Mientras estudiaban el mineral, los Curie retiraron el uranio de él y encontraron que el material restante aún era radiactivo. En 1910 el radio fue aislado por Curie y Andre Debierne en su metal puro mediante la electrólisis de una solución de cloruro puro de radio usando un cátodo de mercurio y destilando en una atmósfera de hidrógeno.
André-Louis Debierne, a French chemist, discovered actinium in 1899. He separated it from pitchblende residues left by Marie and Pierre Curie after they had extracted radium. Friedrich Oskar Giesel independently discovered actinium in 1902 as a substance being similar to lanthanum.
El actinio fue descubierto en 1899 por el químico francés André-Louis Debierne que lo obtuvo de la pechblenda. En 1902 fue descubierto, de forma independiente, por Friedrich Oscar Giesel como una sustancia muy similar al lantano, y lo denominó «emanium» en 1904. Luego de realizadas las comparaciones entre estas sustancias en 1904 se determinó que eran idénticas y el nombre propuesto por Debierne fue retenido debido a que tenía prioridad.
Thorium was discovered by Jöns Jacob Berzelius in 1828, in Stockholm, Sweden. Thorium was first observed to be radioactive in 1898, independently, by Polish-French physicist Marie Curie and German chemist Gerhard Carl Schmidt. The crystal bar process was discovered by Anton Eduard van Arkel and Jan Hendrik de Boer in 1925 to produce high-purity metallic thorium.
El torio fue descubierto por Jöns Jacob Berzelius en 1828, en Estocolmo, Suecia. Independientemente, en 1898, observaron que el torio es radioactivo la física polaco-francesa Marie Curie y el químico alemán Gerhard Carl Schmidt. El proceso de barra cristalina, para producir torio metálico de alta puresa, fue descubierto en 1925 por Anton Eduard van Arkel y Jan Hendrik de Boer.
In 1900, William Crookes isolated protactinium as an intensely radioactive material from uranium Protactinium was first identified in 1913 by Kasimir Fajans and Oswald Helmuth Göhring in Germany. A more stable isotope of protactinium was discovered in 1917 by Otto Hahn and Lise Meitner at the Kaiser Wilhelm Institute in Berlin.
El protactinio fue identificado por primera vez en 1913 cuando Kasimir Fajans y O.H. Göhring encontraron el isótopo de corta vida <sup>234m</sup>Pa, con una vida media de, en torno, 1,17 minutos, durante sus estudios de la cadena de decaimiento del <sup>238</sup>U. El nombre se cambió a Protoactinium (progenitor del actinio) en 1918 cuando dos grupos de científicos (Otto Hahn y Lise Meitner de Alemania, y Frederick Soddy y John Cranston del Reino Unido) descubrieron de manera independiente el <sup>231</sup>Pa.
Uranium was discovered in 1789 by the German chemist Martin Heinrich Klaproth. In 1841, Eugène-Melchior Péligot isolated the first sample of uranium metal by heating uranium tetrachloride with potassium. Antoine Henri Becquerel discovered radioactivity by using uranium in 1896.
El uranio fue descubierto como óxido en 1789 por el gran químico alemán Martin Heinrich Klaproth. Sin embargo, se sabe que el uranio en forma de óxido, en estado natural, se utilizaba ya en el año 79, en la Antigua Roma y más tarde, en la Edad Media, era ampliamente utilizado en vidriería de color amarillo. Klaproth descubrió el óxido de uranio, pero el elemento no fue aislado hasta 1841, cuando así lo consiguió el químico francés Eugène-Melchior Péligot.
Neptunium was the first synthetic transuranium element of the actinide series to be discovered. Neptunium was first produced by Edwin McMillan and Philip H. Abelson in 1940 at Berkeley Radiation Laboratory of the University of California. The team produced the neptunium isotope <sup>239</sup>Np by bombarding uranium with slow moving neutrons.
El neptunio fue el primer elemento sintético transuránido (o transuránico) de la serie de los actínidos descubierto. El neptunio fue producido por primera vez por Edwin McMillan y Philip H. Abelson, en 1940, en el Laboratorio de Radiación de la Universidad de California en Berkeley.
Plutonium was first produced in 1940 by Glenn T. Seaborg, Edwin M. McMillan, Joseph W. Kennedy and Arthur Wahl. Plutonium-238 was produced by deuteron bombardment of uranium-238 in the 60-inch cyclotron at the University of California, Berkeley. The Berkeley team made neptunium-238 which decayed to plutonium-238.
En 1934 el físico italiano Enrico Fermi informó que había descubierto un nuevo elemento, el número 94. Sin embargo, tiempo después se supo que en realidad no se trataba más que de una combinación de bario (Ba), kriptón (Kr) y una serie de otros elementos. El plutonio fue sintetizado por primera vez en 1940 por un equipo dirigido por Glenn T. Seaborg y Edwin McMillan en el laboratorio de la Universidad de California, Berkeley bombardeando uranio-238 con deuterio.
Americium-241 was first identified in 1944 by Glenn T. Seaborg, Ralph A. James, Leon O. Morgan and Albert Ghiorso at the metallurgical laboratory at the University of Chicago. It was produced by irradiating plutonium with neutrons during the Manhattan Project. Americium was first isolated as a pure compound by Burris Cunningham in 1945, at the University of Chicago.
El americio fue aislado por primera vez por Glenn T. Seaborg, Leon O. Morgan, Ralph A. James, y Albert Ghiorso en 1944 en el Laboratorio de Metalurgia de la Universidad de Chicago. El equipo creó el isótopo <sup>241</sup>Am a partir de <sup>239</sup>Pu, bombardeándolo con neutrones en un reactor nuclear. Esto se transformó en <sup>240</sup>Pu y después en <sup>241</sup>Pu, cambiando así a <sup>241</sup>Am por desintegración beta.
Curium was discovered by Glenn T. Seaborg, Ralph A. James and Albert Ghiorso in 1944 at the University of California, Berkeley. It was produced by bombarding plutonium with alpha particles during the Manhattan Project. Curium metal was produced only in 1951 by reduction of curium fluoride with barium.
El curio fue descubierto por Glenn T. Seaborg, Ralph A. James y Albert Ghiorso en 1944 en la Universidad de California en Berkeley. Fue producido bombardeando plutonio con partículas alfa durante el Proyecto Manhattan. El metal curio fue producido, a partir de 1951, por reducción del fluoruro de curio con bario.
Berkelium was discovered by Glenn T. Seaborg, Albert Ghiorso and Stanley G. Thompson in 1949 at the University of California, Berkeley. It was produced by the bombardment of americium with alpha particles. Berkelium was isolated in greater quantities for the first time by Burris Cunningham and Stanley Thompson in 1958.
El berkelio se descubrió en diciembre de 1949 por los químicos estadounidenses Glenn T. Seaborg, Stanley G. Thompson, y Albert Ghiorso en los laboratorios de la Universidad de California en Berkeley. Se consiguió bombardeando cantidades del orden del miligramo de <sup>241</sup>Am con partículas alfa aceleradas en el ciclotrón. El primer isótopo producido tenía una masa de 243 y una vida media de unas 4, 5 horas.
Californium was discovered by Stanley G. Thompson, Kenneth Street, Jr., Albert Ghiorso and Glenn T. Seaborg in 1950 at the University of California, Berkeley. It was produced by the bombardment of curium with alpha particles. Californium was isolated in macro quantities for the first time by Burris Cunningham and Stanley Thompson in 1958.
Los investigadores de física Stanley G. Thompson, Kenneth Street, Jr., Albert Ghiorso y Glenn T. Seaborg sintetizaron por primera vez californio en la Universidad de California, Berkeley alrededor del 9 de febrero de 1950. Para producir californio bombardearon con partículas alfa de 35 MeV una muestra de curio-242 del orden de los microgramos, en un ciclotrón de 1500 mm de diámetro en Berkeley, California, lo que produjo como resultado californio-245 y un neutrón libre.
Einsteinium was discovered as a component of the debris of the first hydrogen bomb explosion in 1952. It was identified by Albert Ghiorso and co-workers at the University of California, Berkeley in collaboration with the Argonne and Los Alamos National Laboratories, in the fallout from the Ivy Mike nuclear test. The new element was produced by the nuclear explosion in miniscule amounts by the addition of 15 neutrons to uranium-238.
El elemento se descubrió en diciembre de 1952 en los restos de la primera explosión termonuclear en el Pacífico, realizada un mes antes, por el equipo de investigadores formado por G.R. Choppin, A. Ghiorso, B.G. Harvey y S.G. Thompson. El isótopo formado, <sup>253</sup>Es, resultó tener una vida media de unos 20 dias y su proceso de formación había consistido en la captura de 15 neutrones por el <sup>238</sup>Pu, seguida de una serie de emisiones de partículas beta.
Fermium was discovered as a component of the debris of the first hydrogen bomb explosion in 1952. It was identified by Albert Ghiorso and co-workers at the University of California, Berkeley in collaboration with the Argonne and Los Alamos National Laboratories, in the fallout from the Ivy Mike nuclear test. The new element was produced by the nuclear fission of 17 neutrons with uranium-238.
El elemento fue aislado en 1952, a partir de los restos de una explosión de bomba de hidrógeno, por el químico estadounidense Albert Ghiorso y sus colegas. Más tarde el fermio fue preparado sintéticamente en un reactor nuclear bombardeando plutonio con neutrones, y en un ciclotrón bombardeando uranio 238 con iones de nitrógeno. Se han obtenido isótopos con números másicos desde 242 a 259.
Mendelevium was discovered by Albert Ghiorso, Glenn T. Seaborg, Gregory R. Choppin, Bernard G. Harvey and Stanley G. Thompson in 1955 at the University of California, Berkeley. It was produced by the bombardment of einsteinium with helium. Mendelevium was identified by chemical analysis in an ion exchange experiment.
Fue preparado, a principios de 1955, por Albert Ghiorso, Bernard G. Harvey, Gregory R. Choppin, Stanley G. Thompson y Glenn T. Seaborg mediante el bombardeo del <sup>253</sup>Es con iones de helio. El isótopo producido resultó tener una vida media de unos 76 minutos y es de destacar el trabajo de identificación del equipo de investigadores de Berkeley ya que los átomos fueron obtenidos uno a uno.
Nobelium was discovered by Albert Ghiorso, Glenn T. Seaborg, John R. Walton and Torbjørn Sikkeland in 1958 at the University of California, Berkeley. It was produced by the bombardment of curium with carbon atoms. It was correctly identified in 1966 by scientists at the Flerov Laboratory of Nuclear Reactions in Dubna, Soviet Union.
Un equipo de científicos que trabajaba en Estocolmo anunció, en 1957, el descubrimiento de un isótopo del elemento de número atómico 102. Consiguieron este isótopo bombardeando el isótopo de curio <sup>244</sup>Cm con iones de del isótopo del carbono <sup>13</sup>C. En 1958 se produjo el descubrimiento confirmado de un isótopo del nobelio por parte de los investigadores Ghiorso, Seaborg, Sikkeland y Walton del Laboratorio Lawrence de Radiación en Berkeley, California.
Lawrencium was discovered by Albert Ghiorso, Torbjørn Sikkeland, Almon Larsh and Robert M. Latimer in 1961 at the University of California, Berkeley. It was produced by the bombardment of californium with boron atoms. Lawrencium was the last member of the actinide series to be discovered.
El lawrencio fue descubierto, bombardeando átomos de californio con núcleos de boro, en 1961 en el Laboratorio de Radiación Lawrence de la Universidad de California por Albert Ghiorso, A.E. Larsh, R.M. Latimer y T. Sikkeland. En 1971, el equipo de física nuclear de la Universidad de California en Berkeley realizaron con éxito toda una serie de experimentos dirigidos a la medición de las propiedades de desintegración nuclear de los isótopos de lawrencio con masa de 255 a 260.
Rutherfordium was reportedly first detected in 1964 at the Joint Institute of Nuclear Research at Dubna. The element was synthesized by Albert Ghiorso, Matti Nurmia, James Andrew Harris, Kari Eskola and Pirkko Eskola in 1968 at the University of California, Berkeley. It was produced by the bombardment of californium with carbon atoms.
En 1964, los investigadores del Instituto Nuclear de Dubna (Rusia) anunciaron el descubrimiento del elemento 104, conseguido mediante el bombardeo de plutonio-242 con iones de neon-22. En 1969, cientificos estadounidenses de la Universidad de Berkeley publicaron que habian obtenido trazas de isotopos del elemento 104 mediante el bombardeo de californio-249 con carbono-12.
Dubnium was reportedly first discovered in 1968 at the Joint Institute for Nuclear Research at Dubna. Researchers there bombarded an americium-243 target with neon-22 ions. In the same year, a team led by Albert Ghiorso working at the University of California, Berkeley conclusively synthesized the element by bombarding a californium-249 target with nitrogen-15 ions.
La existencia del dubnio fue indicada por primera vez en 1968 por científicos rusos del Instituto Central de Investigaciones Nucleares (ICIN) en Dubna, Unión Soviética. Los investigadores bombardearon un blanco de americio-243 con iones de neón-22. A finales de abril de 1970 un grupo de investigadores liderados por Albert Ghiorso de la Universidad de California, publicaron los detalles de la síntesis de <sup>260</sup>Db mediante el bombardeo de un blanco de californio-249 con iones de nitrógeno-15.
Scientists working at the Joint Institute for Nuclear Research in Dubna, USSR reported their discovery of element 106 in June 1974. Synthesis was also reported in September 1974 at the Lawrence Berkeley Laboratory by the workers of the Lawrence Berkeley and Livermore Laboratories led by Albert Ghiorso and E. Kenneth Hulet. It was produced by collisions of californium-249 with oxygen atoms.
En junio de 1974, un grupo de investigadores norteamericanos liderado por Albert Ghiorso en el Lawrence Radiation Laboratory de la Universidad de California, Berkeley reportó la creación de un isótopo de número de masa 263 y una vida media de 1,0 s. En septiembre de 1974, un equipo soviético liderado por Georgii Flerov en el Instituto Conjunto para la Investigación Nuclear en Dubna reportó que había producido un isótopo de número de masa 259 y una vida media de 0,48 s.
Bohrium was first convincingly synthesized in 1981 by a German research team led by Peter Armbruster and Gottfried Münzenberg at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt. The team bombarded a target of bismuth-209 with accelerated nuclei of chromium-54 to produce 5 atoms of the isotope bohrium-262.
El bohrio fue sintetizado e identificado sin ambigüedad en 1981 por un equipo de Darmstadt, Alemania, equipo dirigido por P. Armbruster y G. Müzenberg. La reacción usada para producir el elemento fue propuesta y aplicada en 1976 por un grupo de Dubna (cerca de Moscú), que estaba bajo la guía de Yuri Organessian. Un blanco de <sup>209</sup>Bi fue bombardeado por un haz de proyectiles de <sup>54</sup>Cr.
Hassium was first synthesized in 1984 by a German research team led by Peter Armbruster and Gottfried Münzenberg at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt. The team bombarded a target of lead-208 with accelerated nuclei of iron-58 to produce 3 atoms of the isotope hassium-265.
El hassio fue sintetizado por primera vez en 1984 por el grupo de investigación alemán Gesellschaft für Schwerionenforschung localizado en Darmstadt. El isótopo <sup>265</sup>Hs fue producido en una reacción de fusión bombardeando un blanco de <sup>208</sup>Pb con un haz de proyectiles de <sup>58</sup>Fe.
Meitnerium was first synthesized in 1982 by a German research team led by Peter Armbruster and Gottfried Münzenberg at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt. The team bombarded a target of bismuth-209 with accelerated nuclei of iron-58 and detected a single atom of the isotope meitnerium-266.
El meitnerio fue encontrado por accidente en 1982 por Peter Armbruster y Gottfried Münzenberg en el Instituto de Investigación de Iones Pesados (Gesellschaft für Schwerionenforschung) en Darmstadt. El equipo lo consiguió bombardeando bismuto-210 con núcleos acelerados de hierro-74. La creación de este elemento demostró que las técnicas de fusión nuclear podían ser usadas para crear nuevos núcleos pesados.
Darmstadtium was first created in 1994, at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany, by Peter Armbruster and Gottfried Münzenberg, under the direction of Sigurd Hofmann. The team bombarded a lead-208 target with accelerated nuclei of nickel-62 and detected a single atom of the isotope darmstadtium-269.
Fue creado por primera vez el 9 de noviembre de 1994 en la Gesellschaft für Schwerionenforschung en Darmstadt, Alemania, por P. Armbruster, S. Hofmann, G. Münzenberg y otros. Nunca ha sido visto y sólo unos pocos átomos del mismo han sido creados por el bombardeo de isótopos de plomo (<sup>208</sup>Pb) con iones acelerados de níquel (<sup>62</sup>Ni, 311 MeV), en un acelerador de iones pesados.
Roentgenium was first synthesized by an international team led by Sigurd Hofmann at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany in 1994. The team bombarded a target of bismuth-209 with accelerated nuclei of nickel-64 and detected a single atom of the isotope roentgenium-272.
El roentgenio fue producido por primera vez en Alemania por Peter Armbruster, Gottfried Münzenber y sus equipos a finales de 1994. Bombardearon átomos de bismuto 209 con iones de níquel 64 con un aparato conocido como acelerador lineal. Esto produjo tres átomos de roentgenio 272, un isótopo de una vida media de alrededor de 1,5 milisegundos (0,0015 segundos), y liberación de un neutrón.
Copernicium was first created on February 9, 1996, at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany, by Sigurd Hofmann, Victor Ninov et al. This element was created by firing accelerated zinc-70 nuclei at a target made of lead-208 nuclei in a heavy ion accelerator. A single atom of copernicium was produced with a mass number of 277.
El copernicio fue descubierto en 1996 al bombardear Pb-208 con Zn-70 en la Gesellschaft für Schwerionenforschung (GSI, Sociedad de Investigación de Iones Pesados) en Darmstadt, Alemania. Utilizaron un acelerador de 100 metros de longitud, dispararon iones de zinc en una lámina de plomo. La fusión del núcleo atómico de los dos elementos produjo un átomo del nuevo elemento 112.
Nihonium was identified in 2003 as an alpha decay product of element 115, moscovium by a team composed of Russian scientists at Joint Institute for Nuclear Research, Dubna and American scientists at the Lawrence Livermore National Laboratory. The Dubna-Livermore collaboration has strengthened their claim for the discovery of nihonium by conducting chemical experiments on the final decay product <sup>268</sup>Db.
El nihonio fue descubierto en el Instituto Asociado para la Investigación Nuclear de Dubna, Rusia (JINR) y por investigadores del laboratorio Lawrence Livemore de Berkeley, en Estados Unidos, como producto de desintegración del elemento 115. Fue descubierto también por los investigadores japoneses en el laboratorio de Riken, que lograron sintetizar y observar el elemento, convirtiéndose así en el primer elemento sintético en ser producido en Japón.
Ununquadium (Uuq) was the temporary IUPAC systematic element name. In 1998, a team led by Yuri Oganessian and Vladimir Utyonkov at the Joint Institute for Nuclear Research, Dubna produced flerovium by bombarding plutonium with calcium. In an experiment lasting 40 days, 5 x 10<sup>18</sup> atoms of calcium to be fired at plutonium to produce a single atom of flerovium.
El descubrimiento del flerovio es fruto de una investigación realizada por el Instituto Central de Investigaciones Nucleares de Dubna (Rusia) y el Laboratorio Nacional Lawrence Livermore de California (Estados Unidos). En 1998, físicos rusos bombardearon plutonio-242 con calcio-48 y obtuvieron un efímero átomo de elemento 114.
Moscovium was identified in 2004 by a team composed of Russian scientists at the Joint Institute for Nuclear Research in Dubna, and American scientists at the Lawrence Livermore National Laboratory. The team reported that they bombarded americium-243 with calcium-48 ions to produce four atoms of moscovium. These atoms decayed by emission of alpha-particles to nihonium in approximately 100 milliseconds.
El 2 de febrero de 2004 se informó en la revista Physical Review C que un equipo integrado por científicos rusos en el Instituto Conjunto para la Investigación Nuclear en Dubna, y los científicos norteamericanos en el Lawrence Livermore National Laboratory hicieron el descubrimiento del moscovio. El equipo informó que bombardearon americio 243 con calcio 48 para producir iones de cuatro átomos de moscovio.
Ununhexium (Uuh) was the temporary IUPAC systematic element name. Livermorium was identified in 2000 by a team composed of Russian scientists at Joint Institute for Nuclear Research, Dubna and American scientists at the Lawrence Livermore National Laboratory led by Yuri Oganessian and Ken Moody.
El descubrimiento del livermorio es fruto de una investigación realizada por el Instituto Central de Investigaciones Nucleares de Dubna (Rusia) y el Laboratorio Nacional Lawrence Livermore de California (Estados Unidos). En 1998, físicos rusos bombardearon curio-245 con calcio-48 y obtuvieron un efímero átomo de elemento 116.
Tennessine was identified in 2010 by a team composed of Russian scientists at Joint Institute for Nuclear Research, Dubna and American scientists at the Lawrence Livermore National Laboratory. It was produced by the bombardment of berkelium with calcium. Ununseptium was the temporary IUPAC systematic element name.
Su descubrimiento se anunció en 2010 y fue fruto de una colaboración entre científicos rusos y estadounidenses en el Instituto Central de Investigaciones Nucleares de Dubná, Rusia. En un experimento en 2011, se creó directamente uno de sus productos de desintegración, confirmando parcialmente los resultados del experimento inicial; el experimento, además, fue repetido con éxito en 2012.
Oganesson was identified in 2002 by a team composed of Russian scientists at Joint Institute for Nuclear Research, Dubna and American scientists at the Lawrence Livermore National Laboratory. It was produced by the bombardment of californium with calcium. Ununoctium was the temporary IUPAC systematic element name.
El primer grupo de átomos de oganesón fue propiamente observado en el Instituto Central de Investigaciones Nucleares (JINR) de Dubna, Rusia, en 2002. El 9 de octubre de 2006 un equipo conjunto del JINR y del Laboratorio Nacional Lawrence Livermore estadounidense, trabajando en las instalaciones del JINR, anunciaron que habían detectado indirectamente un total de tres o quizás cuatro núcleos de oganesón-294 mediante la colisión de iones de californio-249 y calcio-48.
Liquid hydrogen is used as a rocket fuel. Hydrogen is commonly used in power stations as a coolant in generators. Hydrogen's two heavier isotopes (deuterium and tritium) are used in nuclear fusion. Used as a shielding gas in welding methods such as atomic hydrogen welding.
El empleo más importante del hidrógeno es en la síntesis del amoniaco. Grandes cantidades de hidrógeno se emplean como combustible de cohetes, en combinación con oxígeno o flúor, y como un propulsor de cohetes impulsados por energía nuclear. Se utiliza como gas de protección en los métodos de soldadura tales como la soldadura de hidrógeno atómico.
Helium is used as a protective gas in growing silicon and germanium crystals, in titanium and zirconium production, and in gas chromatography. Helium at low temperatures is used in cryogenics. Helium is used for filling balloons and for pressurizing liquid fuel rockets. Helium is used as a shielding gas in arc welding processes.
La atmósfera inerte de helio se emplea en la soldadura por arco y en la fabricación de cristales de silicio y germanio, así como para presurizar combustibles líquidos de cohetes. Industrialmente se usa en criogenia en la refrigeración de imanes superconductores. El helio líquido encuentra cada vez mayor uso en las aplicaciones médicas de la imagen por resonancia magnética (RMI).
Pure lithium metal is used in rechargeable lithium ion batteries. Lithium stearate is used as an all-purpose and high-temperature lubricant. Lithium is used in special glasses and ceramics. Metallic lithium and its complex hydrides are used as high energy additives to rocket propellants.
El principal uso industrial del litio es en forma de estearato de litio como espesante para grasas lubricantes. El hidroxido de litio se usa en las naves espaciales y submarinos para depurar el aire extrayendo el dioxido de carbono. Se utiliza como aditivo para alargar la vida y el rendimiento en acumuladores alcalinos. El hidruro de litio se utiliza como combustible para los cohetes.
Beryllium is used in nuclear reactors as a reflector or moderator. Beryllium metal is used for lightweight structural components in the defense and aerospace industries in high-speed aircraft, guided missiles, space vehicles and satellites. Unlike most metals, beryllium is virtually transparent to x-rays and hence it is used in radiation windows for x-ray tubes.
En el diagnóstico con rayos X se usan delgadas láminas de berilio para filtrar la radiación visible, así como en la litografía de rayos X para la reproducción de circuitos integrados. Se utiliza en la construcción de reactores nucleares como moderador y soporte, o en aleaciones con elementos combustibles. El óxido de berilio se emplea cuando son necesarias elevada conductividad térmica y propiedades mecánicas, punto de fusión elevado y aislamiento eléctrico.
Boron oxide is used in glassmaking and ceramics. Borax is used in making fiberglass, as a cleansing fluid, a water softener, insecticide, herbicide and disinfectant. Boric acid is used as a mild antiseptic and as a flame retardant. Boron shielding is used as a control for nuclear reactors.
El boro amorfo se usa en pirotecnia y en el encendido de cohetes. Se usa para fabricar vidrios de borosilicato y esmaltes, principalmente de utensilios de cocina. El boro se utiliza en el proceso de refinado del aluminio. El ácido bórico diluido se utiliza como antiséptico para los ojos y la nariz.
The major use of carbon other than food and wood is in the form of hydrocarbons, most notably the fossil fuel methane gas and crude oil. Graphite is used for pencil tips, high temperature crucibles, dry cells, electrodes and as a lubricant. Diamonds are used in jewelry and in industry for cutting, drilling, grinding, and polishing. Carbon black is used as the black pigment in printing ink.
El principal uso industrial del carbono es como un componente de hidrocarburos, especialmente los combustibles fósiles. El carbón activado se emplea en sistemas de filtrado y purificación de agua. El grafito se utiliza para fabricar minas de lápices. El diamante, además de su conocido empleo en joyería, se usa para fabricar herramientas de corte y taladros.
Nitrogen is used to produce ammonia and fertilizers, vital for current food production methods. Liquid nitrogen is used as a refrigerant. Nitric acid is used as an oxidizing agent in liquid fueled rockets. Nitrogen is a constituent of molecules in every major drug class in pharmacology and medicine.
El nitrógeno se utiliza en la industria electrónica para crear atmósferas inertes para producir transistores y diodos. Se utiliza en la industria del petróleo para incrementar la presión en los pozos y forzar la salida del crudo. Se usa como atmósfera inerte en tanques de explosivos líquidos. El dióxido de nitrógeno se utiliza como anestésico.
Pure oxygen is frequently used to help breathing in patients with respiratory ailments. Oxygen is used in oxyacetylene welding, as an oxidant for rocket fuel, and in methanol and ethylene oxide production. It is also used in the production of steel, plastics and textiles. Plants and animals rely on oxygen for respiration.
El oxígeno se utiliza ampliamente en metalurgia, en la soldadura autogena mezclado con el hidrogeno o acetileno, y en muchas ramas de la industria quimica. Tambien se emplea en medicina para proporcionar respiracion artificial a los pacientes. El ozono se usa como bactericida en algunas piscinas, para la esterilización de agua potable, y como decolorante de aceites, ceras y harinas.
Compounds of fluorine, including sodium fluoride, are used in toothpaste and in drinking water to prevent dental cavities. Hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) now serve as replacements for CFC refrigerants. Fluorine and its compounds are used in processing nuclear fuel.
Se usa para hacer polímeros tal como Teflón que es una resina resistente al calor. En pequeñas cantidades, el ion fluoruro previene la caries dental. El fluoruro de calcio se introduce en alto horno y reduce la viscosidad de la escoria en la metalurgia del hierro. El fluoruro de hidrógeno se emplea en la obtención de criolita sintética.
Neon is often used in brightly lit advertising signs. It is also used in vacuum tubes, high-voltage indicators, lightning arrestors, wave meter tubes, television tubes, and helium-neon lasers. Liquid neon is used as a cryogenic refrigerant.
El tono rojo-anaranjado de la luz emitida por los tubos de neon se usa profusamente para los indicadores publicitarios. Se usa también en láseres de helio-neón. El neón licuado se comercializa como refrigerante criogénico. El neón líquido se utiliza en lugar del hidrógeno líquido para refrigeración.
Metallic sodium is vital in the manufacture of esters and in the preparation of organic compounds. Sodium vapor lamps are often used for street lighting in cities. Liquid sodium is used as a heat transfer fluid in some fast reactors. Sodium is also used as an alloying metal, an anti-scaling agent, and as a reducing agent for metals when other materials are ineffective.
Las principales aplicaciones del sodio son la preparación de colorantes, detergentes, la fabricación de lámparas de vapor de sodio y elaboración de plomo tetraetilo. El hidróxido de sodio, conocido comercialmente como sosa cáustica, se usa en la fabricación de jabón, rayón y papel, en el refinado del petróleo y en las industrias textil. El sodio metálico también se emplea en los laboratorios en la desecación de disolventes.
Magnesium is widely used in the manufacturing of mobile phones, laptop computers, cameras, and other electronic components. The brilliant light it produces when ignited is made use of in photography, flares, pyrotechnics and incendiary bombs. Magnesium compounds such as the hydroxide (milk of magnesia), sulfate (Epsom salts), chloride and citrate are used for medicinal purposes.
Los compuestos de magnesio, principalmente su óxido, se usan como material refractario en hornos para la producción de hierro y acero, metales no férreos, cristal y cemento. El magnesio se utiliza también para la elaboración de vidrios, en la industria cerámica y en el tratamiento de aguas. Las aleaciones de magnesio, especialmente magnesio-aluminio, se emplean en componentes de automóviles, como llantas, y en maquinaria diversa.
Aluminium is used in an extensive range of products from drinks cans to window frames and boats to aircraft. It is used in electrical transmission lines. It is also used for kitchen utensils, outside building decoration, and in thousands of industrial applications. When alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements impart a variety of useful properties.
El aluminio puro se emplea principalmente en la fabricación de espejos, tanto para uso doméstico como para telescopios reflectores. Por su elevada conductividad calorífica, se usa en utensilios de cocina y en los pistones de motores de combustión interna. Debido a su gran reactividad química, el aluminio se usa finamente pulverizado como combustible sólido de cohetes espaciales y para aumentar la potencia de los explosivos.
In the form of sand and clay it is used to make concrete and brick; it is a useful refractory material for high-temperature work, and in the form of silicates it is used in making enamels, pottery, etc. Silica, as sand, is a principal ingredient of glass. Silicon chips are the basis of modern electronic and computing. Silicon carbide, more commonly called carborundum is used in abrasives.
El dióxido de silicio (arena y arcilla) es un importante constituyente del hormigón y los ladrillos y se emplea además en la producción de cemento portland. También se usa en la elaboración de lubricantes, repelentes de agua, barnices, abrasivos, pinturas, adhesivos y siliconas. Por sus propiedades semiconductoras se usa en la fabricación de transistores, células solares y todo tipo de dispositivos semiconductores.

Periodic Table invites you to become a translator to help them translate their Element Details project.

Sign up for free or login to start contributing.