El bismuto es uno de los primeros 10 metales que fueron descubiertos, ya conocido desde la antigüedad, por lo que a ninguna persona se le atribuye su descubrimiento. El elemento se confundió en los primeros tiempos con el estaño y el plomo, debido a su parecido con esos elementos. Claude François Geoffroy demostró en 1753 que este metal era distinto del plomo y del estaño.
No translations found
El polonio fue descubierto por Marie Curie-Skłodowska y Pierre Curie en 1898. Fue el 1º elemento descubierto por el matrimonio Curie mientras investigaban las causas de la radiactividad de la pechblenda. La pechblenda, tras eliminar el uranio y el radio, era incluso más radiactiva que estos elementos juntos. Esto les llevó a encontrar el nuevo elemento.
No translations found
Fue producido artificialmente en 1940, en el Instituto Politécnico de Alabama, mediante bombardeo de bismuto con partículas alfa de alta energía por D.R. Carson, K.R. MacKenzie y E. Segre. El primer isótopo sintetizado fue el <sup>211</sup>At. Posteriormente se produjeron otros isótopos del astato, con números másicos entre el 200 y el 219, teniendo algunos de ellos una vida media de fracciones de segundo.
No translations found
El elemento fue descubierto por el físico alemán Friedrich Ernst Dorn, quien en 1900 notó que esta peculiar sustancia era emitida por el radio (Ra) y así lo describió. En 1908 dos grandes químicos británicos lograron aislar dicha sustancia: el escocés Sir William Ramsay y el químico inglés Robert Whytlaw Gray. Respecto a su nombre, en una primera instancia se le llamó simplemente emanación de radio, más tarde nitón y finalmente radón desde 1923.
No translations found
Ya en 1870, los químicos pensaban que debía existir un metal alcalino más allá del cesio, con un número atómico de 87. Se le denominaba con el nombre provisional de eka-cesio. El francio fue descubierto por Marguerite Catherine Perey, física francesa estudiante y asistente personal de la gran Marie Curie, tras la purificación de muestras de lantano (La) que contenían actinio (Ac) en 1939.
No translations found
El radio fue descubierto en 1898 por Marie Skłodowska-Curie y su marido Pierre en una variedad de uraninita del norte de Bohemia. Mientras estudiaban el mineral, los Curie retiraron el uranio de él y encontraron que el material restante aún era radiactivo. En 1910 el radio fue aislado por Curie y Andre Debierne en su metal puro mediante la electrólisis de una solución de cloruro puro de radio usando un cátodo de mercurio y destilando en una atmósfera de hidrógeno.
No translations found
El actinio fue descubierto en 1899 por el químico francés André-Louis Debierne que lo obtuvo de la pechblenda. En 1902 fue descubierto, de forma independiente, por Friedrich Oscar Giesel como una sustancia muy similar al lantano, y lo denominó «emanium» en 1904. Luego de realizadas las comparaciones entre estas sustancias en 1904 se determinó que eran idénticas y el nombre propuesto por Debierne fue retenido debido a que tenía prioridad.
No translations found
El torio fue descubierto por Jöns Jacob Berzelius en 1828, en Estocolmo, Suecia. Independientemente, en 1898, observaron que el torio es radioactivo la física polaco-francesa Marie Curie y el químico alemán Gerhard Carl Schmidt. El proceso de barra cristalina, para producir torio metálico de alta puresa, fue descubierto en 1925 por Anton Eduard van Arkel y Jan Hendrik de Boer.
No translations found
El protactinio fue identificado por primera vez en 1913 cuando Kasimir Fajans y O.H. Göhring encontraron el isótopo de corta vida <sup>234m</sup>Pa, con una vida media de, en torno, 1,17 minutos, durante sus estudios de la cadena de decaimiento del <sup>238</sup>U. El nombre se cambió a Protoactinium (progenitor del actinio) en 1918 cuando dos grupos de científicos (Otto Hahn y Lise Meitner de Alemania, y Frederick Soddy y John Cranston del Reino Unido) descubrieron de manera independiente el <sup>231</sup>Pa.
No translations found
El uranio fue descubierto como óxido en 1789 por el gran químico alemán Martin Heinrich Klaproth. Sin embargo, se sabe que el uranio en forma de óxido, en estado natural, se utilizaba ya en el año 79, en la Antigua Roma y más tarde, en la Edad Media, era ampliamente utilizado en vidriería de color amarillo. Klaproth descubrió el óxido de uranio, pero el elemento no fue aislado hasta 1841, cuando así lo consiguió el químico francés Eugène-Melchior Péligot.
No translations found
El neptunio fue el primer elemento sintético transuránido (o transuránico) de la serie de los actínidos descubierto. El neptunio fue producido por primera vez por Edwin McMillan y Philip H. Abelson, en 1940, en el Laboratorio de Radiación de la Universidad de California en Berkeley.
No translations found
En 1934 el físico italiano Enrico Fermi informó que había descubierto un nuevo elemento, el número 94. Sin embargo, tiempo después se supo que en realidad no se trataba más que de una combinación de bario (Ba), kriptón (Kr) y una serie de otros elementos. El plutonio fue sintetizado por primera vez en 1940 por un equipo dirigido por Glenn T. Seaborg y Edwin McMillan en el laboratorio de la Universidad de California, Berkeley bombardeando uranio-238 con deuterio.
No translations found
El americio fue aislado por primera vez por Glenn T. Seaborg, Leon O. Morgan, Ralph A. James, y Albert Ghiorso en 1944 en el Laboratorio de Metalurgia de la Universidad de Chicago. El equipo creó el isótopo <sup>241</sup>Am a partir de <sup>239</sup>Pu, bombardeándolo con neutrones en un reactor nuclear. Esto se transformó en <sup>240</sup>Pu y después en <sup>241</sup>Pu, cambiando así a <sup>241</sup>Am por desintegración beta.
No translations found
El curio fue descubierto por Glenn T. Seaborg, Ralph A. James y Albert Ghiorso en 1944 en la Universidad de California en Berkeley. Fue producido bombardeando plutonio con partículas alfa durante el Proyecto Manhattan. El metal curio fue producido, a partir de 1951, por reducción del fluoruro de curio con bario.
No translations found
El berkelio se descubrió en diciembre de 1949 por los químicos estadounidenses Glenn T. Seaborg, Stanley G. Thompson, y Albert Ghiorso en los laboratorios de la Universidad de California en Berkeley. Se consiguió bombardeando cantidades del orden del miligramo de <sup>241</sup>Am con partículas alfa aceleradas en el ciclotrón. El primer isótopo producido tenía una masa de 243 y una vida media de unas 4, 5 horas.
No translations found
Los investigadores de física Stanley G. Thompson, Kenneth Street, Jr., Albert Ghiorso y Glenn T. Seaborg sintetizaron por primera vez californio en la Universidad de California, Berkeley alrededor del 9 de febrero de 1950. Para producir californio bombardearon con partículas alfa de 35 MeV una muestra de curio-242 del orden de los microgramos, en un ciclotrón de 1500 mm de diámetro en Berkeley, California, lo que produjo como resultado californio-245 y un neutrón libre.
No translations found
El elemento se descubrió en diciembre de 1952 en los restos de la primera explosión termonuclear en el Pacífico, realizada un mes antes, por el equipo de investigadores formado por G.R. Choppin, A. Ghiorso, B.G. Harvey y S.G. Thompson. El isótopo formado, <sup>253</sup>Es, resultó tener una vida media de unos 20 dias y su proceso de formación había consistido en la captura de 15 neutrones por el <sup>238</sup>Pu, seguida de una serie de emisiones de partículas beta.
No translations found
El elemento fue aislado en 1952, a partir de los restos de una explosión de bomba de hidrógeno, por el químico estadounidense Albert Ghiorso y sus colegas. Más tarde el fermio fue preparado sintéticamente en un reactor nuclear bombardeando plutonio con neutrones, y en un ciclotrón bombardeando uranio 238 con iones de nitrógeno. Se han obtenido isótopos con números másicos desde 242 a 259.
No translations found
Fue preparado, a principios de 1955, por Albert Ghiorso, Bernard G. Harvey, Gregory R. Choppin, Stanley G. Thompson y Glenn T. Seaborg mediante el bombardeo del <sup>253</sup>Es con iones de helio. El isótopo producido resultó tener una vida media de unos 76 minutos y es de destacar el trabajo de identificación del equipo de investigadores de Berkeley ya que los átomos fueron obtenidos uno a uno.
No translations found
Un equipo de científicos que trabajaba en Estocolmo anunció, en 1957, el descubrimiento de un isótopo del elemento de número atómico 102. Consiguieron este isótopo bombardeando el isótopo de curio <sup>244</sup>Cm con iones de del isótopo del carbono <sup>13</sup>C. En 1958 se produjo el descubrimiento confirmado de un isótopo del nobelio por parte de los investigadores Ghiorso, Seaborg, Sikkeland y Walton del Laboratorio Lawrence de Radiación en Berkeley, California.
No translations found
El lawrencio fue descubierto, bombardeando átomos de californio con núcleos de boro, en 1961 en el Laboratorio de Radiación Lawrence de la Universidad de California por Albert Ghiorso, A.E. Larsh, R.M. Latimer y T. Sikkeland. En 1971, el equipo de física nuclear de la Universidad de California en Berkeley realizaron con éxito toda una serie de experimentos dirigidos a la medición de las propiedades de desintegración nuclear de los isótopos de lawrencio con masa de 255 a 260.
No translations found
En 1964, los investigadores del Instituto Nuclear de Dubna (Rusia) anunciaron el descubrimiento del elemento 104, conseguido mediante el bombardeo de plutonio-242 con iones de neon-22. En 1969, cientificos estadounidenses de la Universidad de Berkeley publicaron que habian obtenido trazas de isotopos del elemento 104 mediante el bombardeo de californio-249 con carbono-12.
No translations found
La existencia del dubnio fue indicada por primera vez en 1968 por científicos rusos del Instituto Central de Investigaciones Nucleares (ICIN) en Dubna, Unión Soviética. Los investigadores bombardearon un blanco de americio-243 con iones de neón-22. A finales de abril de 1970 un grupo de investigadores liderados por Albert Ghiorso de la Universidad de California, publicaron los detalles de la síntesis de <sup>260</sup>Db mediante el bombardeo de un blanco de californio-249 con iones de nitrógeno-15.
No translations found
En junio de 1974, un grupo de investigadores norteamericanos liderado por Albert Ghiorso en el Lawrence Radiation Laboratory de la Universidad de California, Berkeley reportó la creación de un isótopo de número de masa 263 y una vida media de 1,0 s. En septiembre de 1974, un equipo soviético liderado por Georgii Flerov en el Instituto Conjunto para la Investigación Nuclear en Dubna reportó que había producido un isótopo de número de masa 259 y una vida media de 0,48 s.
No translations found
El bohrio fue sintetizado e identificado sin ambigüedad en 1981 por un equipo de Darmstadt, Alemania, equipo dirigido por P. Armbruster y G. Müzenberg. La reacción usada para producir el elemento fue propuesta y aplicada en 1976 por un grupo de Dubna (cerca de Moscú), que estaba bajo la guía de Yuri Organessian. Un blanco de <sup>209</sup>Bi fue bombardeado por un haz de proyectiles de <sup>54</sup>Cr.
No translations found
El hassio fue sintetizado por primera vez en 1984 por el grupo de investigación alemán Gesellschaft für Schwerionenforschung localizado en Darmstadt. El isótopo <sup>265</sup>Hs fue producido en una reacción de fusión bombardeando un blanco de <sup>208</sup>Pb con un haz de proyectiles de <sup>58</sup>Fe.
No translations found
El meitnerio fue encontrado por accidente en 1982 por Peter Armbruster y Gottfried Münzenberg en el Instituto de Investigación de Iones Pesados (Gesellschaft für Schwerionenforschung) en Darmstadt. El equipo lo consiguió bombardeando bismuto-210 con núcleos acelerados de hierro-74. La creación de este elemento demostró que las técnicas de fusión nuclear podían ser usadas para crear nuevos núcleos pesados.
No translations found
Fue creado por primera vez el 9 de noviembre de 1994 en la Gesellschaft für Schwerionenforschung en Darmstadt, Alemania, por P. Armbruster, S. Hofmann, G. Münzenberg y otros. Nunca ha sido visto y sólo unos pocos átomos del mismo han sido creados por el bombardeo de isótopos de plomo (<sup>208</sup>Pb) con iones acelerados de níquel (<sup>62</sup>Ni, 311 MeV), en un acelerador de iones pesados.
No translations found
El roentgenio fue producido por primera vez en Alemania por Peter Armbruster, Gottfried Münzenber y sus equipos a finales de 1994. Bombardearon átomos de bismuto 209 con iones de níquel 64 con un aparato conocido como acelerador lineal. Esto produjo tres átomos de roentgenio 272, un isótopo de una vida media de alrededor de 1,5 milisegundos (0,0015 segundos), y liberación de un neutrón.
No translations found
El copernicio fue descubierto en 1996 al bombardear Pb-208 con Zn-70 en la Gesellschaft für Schwerionenforschung (GSI, Sociedad de Investigación de Iones Pesados) en Darmstadt, Alemania. Utilizaron un acelerador de 100 metros de longitud, dispararon iones de zinc en una lámina de plomo. La fusión del núcleo atómico de los dos elementos produjo un átomo del nuevo elemento 112.
No translations found
El nihonio fue descubierto en el Instituto Asociado para la Investigación Nuclear de Dubna, Rusia (JINR) y por investigadores del laboratorio Lawrence Livemore de Berkeley, en Estados Unidos, como producto de desintegración del elemento 115. Fue descubierto también por los investigadores japoneses en el laboratorio de Riken, que lograron sintetizar y observar el elemento, convirtiéndose así en el primer elemento sintético en ser producido en Japón.
No translations found
El descubrimiento del flerovio es fruto de una investigación realizada por el Instituto Central de Investigaciones Nucleares de Dubna (Rusia) y el Laboratorio Nacional Lawrence Livermore de California (Estados Unidos). En 1998, físicos rusos bombardearon plutonio-242 con calcio-48 y obtuvieron un efímero átomo de elemento 114.
No translations found
El 2 de febrero de 2004 se informó en la revista Physical Review C que un equipo integrado por científicos rusos en el Instituto Conjunto para la Investigación Nuclear en Dubna, y los científicos norteamericanos en el Lawrence Livermore National Laboratory hicieron el descubrimiento del moscovio. El equipo informó que bombardearon americio 243 con calcio 48 para producir iones de cuatro átomos de moscovio.
No translations found
El descubrimiento del livermorio es fruto de una investigación realizada por el Instituto Central de Investigaciones Nucleares de Dubna (Rusia) y el Laboratorio Nacional Lawrence Livermore de California (Estados Unidos). En 1998, físicos rusos bombardearon curio-245 con calcio-48 y obtuvieron un efímero átomo de elemento 116.
No translations found
Su descubrimiento se anunció en 2010 y fue fruto de una colaboración entre científicos rusos y estadounidenses en el Instituto Central de Investigaciones Nucleares de Dubná, Rusia. En un experimento en 2011, se creó directamente uno de sus productos de desintegración, confirmando parcialmente los resultados del experimento inicial; el experimento, además, fue repetido con éxito en 2012.
No translations found
El primer grupo de átomos de oganesón fue propiamente observado en el Instituto Central de Investigaciones Nucleares (JINR) de Dubna, Rusia, en 2002. El 9 de octubre de 2006 un equipo conjunto del JINR y del Laboratorio Nacional Lawrence Livermore estadounidense, trabajando en las instalaciones del JINR, anunciaron que habían detectado indirectamente un total de tres o quizás cuatro núcleos de oganesón-294 mediante la colisión de iones de californio-249 y calcio-48.
No translations found
El empleo más importante del hidrógeno es en la síntesis del amoniaco. Grandes cantidades de hidrógeno se emplean como combustible de cohetes, en combinación con oxígeno o flúor, y como un propulsor de cohetes impulsados por energía nuclear. Se utiliza como gas de protección en los métodos de soldadura tales como la soldadura de hidrógeno atómico.
No translations found
La atmósfera inerte de helio se emplea en la soldadura por arco y en la fabricación de cristales de silicio y germanio, así como para presurizar combustibles líquidos de cohetes. Industrialmente se usa en criogenia en la refrigeración de imanes superconductores. El helio líquido encuentra cada vez mayor uso en las aplicaciones médicas de la imagen por resonancia magnética (RMI).
No translations found
El principal uso industrial del litio es en forma de estearato de litio como espesante para grasas lubricantes. El hidroxido de litio se usa en las naves espaciales y submarinos para depurar el aire extrayendo el dioxido de carbono. Se utiliza como aditivo para alargar la vida y el rendimiento en acumuladores alcalinos. El hidruro de litio se utiliza como combustible para los cohetes.
No translations found
En el diagnóstico con rayos X se usan delgadas láminas de berilio para filtrar la radiación visible, así como en la litografía de rayos X para la reproducción de circuitos integrados. Se utiliza en la construcción de reactores nucleares como moderador y soporte, o en aleaciones con elementos combustibles. El óxido de berilio se emplea cuando son necesarias elevada conductividad térmica y propiedades mecánicas, punto de fusión elevado y aislamiento eléctrico.
No translations found
El boro amorfo se usa en pirotecnia y en el encendido de cohetes. Se usa para fabricar vidrios de borosilicato y esmaltes, principalmente de utensilios de cocina. El boro se utiliza en el proceso de refinado del aluminio. El ácido bórico diluido se utiliza como antiséptico para los ojos y la nariz.
No translations found
El principal uso industrial del carbono es como un componente de hidrocarburos, especialmente los combustibles fósiles. El carbón activado se emplea en sistemas de filtrado y purificación de agua. El grafito se utiliza para fabricar minas de lápices. El diamante, además de su conocido empleo en joyería, se usa para fabricar herramientas de corte y taladros.
No translations found
El nitrógeno se utiliza en la industria electrónica para crear atmósferas inertes para producir transistores y diodos. Se utiliza en la industria del petróleo para incrementar la presión en los pozos y forzar la salida del crudo. Se usa como atmósfera inerte en tanques de explosivos líquidos. El dióxido de nitrógeno se utiliza como anestésico.
No translations found
El oxígeno se utiliza ampliamente en metalurgia, en la soldadura autogena mezclado con el hidrogeno o acetileno, y en muchas ramas de la industria quimica. Tambien se emplea en medicina para proporcionar respiracion artificial a los pacientes. El ozono se usa como bactericida en algunas piscinas, para la esterilización de agua potable, y como decolorante de aceites, ceras y harinas.
No translations found
Se usa para hacer polímeros tal como Teflón que es una resina resistente al calor. En pequeñas cantidades, el ion fluoruro previene la caries dental. El fluoruro de calcio se introduce en alto horno y reduce la viscosidad de la escoria en la metalurgia del hierro. El fluoruro de hidrógeno se emplea en la obtención de criolita sintética.
No translations found
El tono rojo-anaranjado de la luz emitida por los tubos de neon se usa profusamente para los indicadores publicitarios. Se usa también en láseres de helio-neón. El neón licuado se comercializa como refrigerante criogénico. El neón líquido se utiliza en lugar del hidrógeno líquido para refrigeración.
No translations found
Las principales aplicaciones del sodio son la preparación de colorantes, detergentes, la fabricación de lámparas de vapor de sodio y elaboración de plomo tetraetilo. El hidróxido de sodio, conocido comercialmente como sosa cáustica, se usa en la fabricación de jabón, rayón y papel, en el refinado del petróleo y en las industrias textil. El sodio metálico también se emplea en los laboratorios en la desecación de disolventes.
No translations found
Los compuestos de magnesio, principalmente su óxido, se usan como material refractario en hornos para la producción de hierro y acero, metales no férreos, cristal y cemento. El magnesio se utiliza también para la elaboración de vidrios, en la industria cerámica y en el tratamiento de aguas. Las aleaciones de magnesio, especialmente magnesio-aluminio, se emplean en componentes de automóviles, como llantas, y en maquinaria diversa.
No translations found
El aluminio puro se emplea principalmente en la fabricación de espejos, tanto para uso doméstico como para telescopios reflectores. Por su elevada conductividad calorífica, se usa en utensilios de cocina y en los pistones de motores de combustión interna. Debido a su gran reactividad química, el aluminio se usa finamente pulverizado como combustible sólido de cohetes espaciales y para aumentar la potencia de los explosivos.
No translations found
El dióxido de silicio (arena y arcilla) es un importante constituyente del hormigón y los ladrillos y se emplea además en la producción de cemento portland. También se usa en la elaboración de lubricantes, repelentes de agua, barnices, abrasivos, pinturas, adhesivos y siliconas. Por sus propiedades semiconductoras se usa en la fabricación de transistores, células solares y todo tipo de dispositivos semiconductores.
No translations found

Periodic Table invites you to become a translator to help them translate their Element Details project.

Sign up for free or login to start contributing.