O Bismuto é conhecido desde a antiguidade, portanto ninguém é creditado pela sua descoberta . Em tempos antigos, o elemento foi confundido com o estanho e com o chumbo, devido à sua semelhança com estes. Em 1753, o químico francês Claude François Geoffroy demonstrou que este metal é diferente do chumbo e do estanho.
O Bismuto é conhecido desde a antiguidade, portanto ninguém é creditado pela sua descoberta . Em tempos antigos, o elemento foi confundido com o estanho e com o chumbo, devido à sua semelhança com estes. Em 1753, o químico francês Claude François Geoffroy demonstrou que este metal é diferente do chumbo e do estanho.
O Polónio foi descoberto por Marie e Pierre Curie, em 1898. Este foi o primeiro elemento a ser descoberto pelos Curie, enquanto investigavam a causa da radioatividade da pecheblenda. Os riscos do trabalho com elementos radioativos eram desconhecidos, quando os Curie fizeram as suas descobertas.
O Polónio foi descoberto por Marie e Pierre Curie, em 1898. Este foi o primeiro elemento a ser descoberto pelos Curie, enquanto investigavam a causa da radioatividade da pecheblenda. Os riscos do trabalho com elementos radioativos eram desconhecidos, quando os Curie fizeram as suas descobertas.
Em 1869, a existência do Ástato foi prevista pela primeira vez, pelo químico Russo Dmitri Mendeleev e o elemento, designado por Eka-Iodo. Em 1940, Dale R. Corson, Kenneth Ross MacKenzie, e Emilio Segrè isolaram o elemento na Universidade da Califórnia, em Berkley. Em vez de procurarem o elemento na natureza, os cientistas criaram-no, através do bombardeamento do Bismuto-209, com partículas Alfa.
Em 1869, a existência do Ástato foi prevista pela primeira vez, pelo químico Russo Dmitri Mendeleev e o elemento, designado por Eka-Iodo. Em 1940, Dale R. Corson, Kenneth Ross MacKenzie, e Emilio Segrè isolaram o elemento na Universidade da Califórnia, em Berkley. Em vez de procurarem o elemento na natureza, os cientistas criaram-no, através do bombardeamento do Bismuto-209, com partículas Alfa.
O Rádon foi descoberto por Friedrich Ernst Dorn, em 1900, em Halle, na Alemanha. Ele relatou algumas experiências em que observou que alguns compostos de rádio emanavam um gás radioativo. Em 1910, Sir William Ramsay e Robert Whytlaw-Gray isolaram o Rádon, determinaram a sua densidade e que era o gás mais pesado, então conhecido.
O Rádon foi descoberto por Friedrich Ernst Dorn, em 1900, em Halle, na Alemanha. Ele relatou algumas experiências em que observou que alguns compostos de rádio emanavam um gás radioativo. Em 1910, Sir William Ramsay e Robert Whytlaw-Gray isolaram o Rádon, determinaram a sua densidade e que era o gás mais pesado, então conhecido.
O Frâncio foi descoberto em 1939 por Marguerite Perey do Instituto Curie, em Paris., quando ela investigava a desintegração radioativa do Actínio-227. Marguerite Perey descobriu que o Frâncio-223 é obtido naturalmente, quando o Actínio-227 emite uma partícula alfa.
O Frâncio foi descoberto em 1939 por Marguerite Perey do Instituto Curie, em Paris., quando ela investigava a desintegração radioativa do Actínio-227. Marguerite Perey descobriu que o Frâncio-223 é obtido naturalmente, quando o Actínio-227 emite uma partícula alfa.
O Rádio foi descoberto por Marie Curie e Pierre Curie e 1898. Ambos extraíram um composto de rádio, duma amostra de uraninite. O rádio foi isolado no seu estado metálico por Marie Curie e André-Louis Debierne, em 1910, através da eletrólise do cloreto de rádio, empregando um cátodo de mercúrio e destilando numa atmosfera de gás hidrogénio.
O Rádio foi descoberto por Marie Curie e Pierre Curie e 1898. Ambos extraíram um composto de rádio, duma amostra de uraninite. O rádio foi isolado no seu estado metálico por Marie Curie e André-Louis Debierne, em 1910, através da eletrólise do cloreto de rádio, empregando um cátodo de mercúrio e destilando numa atmosfera de gás hidrogénio.
André-Louis Debierne, um químico francês, descobriu o Actínio, em 1899. Ele separou-o de resíduos de pecheblenda, deixados por Marie e Pierre Curie, após a extração de rádio. Friedrich Oskar Giesel descobriu, por seu lado, o Actínio em 1902, como uma substância similar ao Lantânio
André-Louis Debierne, um químico francês, descobriu o Actínio, em 1899. Ele separou-o de resíduos de pecheblenda, deixados por Marie e Pierre Curie, após a extração de rádio. Friedrich Oskar Giesel descobriu, por seu lado, o Actínio em 1902, como uma substância similar ao Lantânio
O Tório foi descoberto por Jöns Jacob Berzelius, em 1828, em Estocolmo, na Suécia. O Tório foi observado como sendo radioativo, pela primeira vez, em 1898, pela física polaco-francesa, Marie Curie e palo químico Alemão Gerhard Carl Schmidt. O processo Van Arkel-de Boer foi descoberto em 1925, por Anton Eduard van Arkel and Jan Hendrik de Boer para produzir Tório metálico com alto grau de pureza.
O Tório foi descoberto por Jöns Jacob Berzelius, em 1828, em Estocolmo, na Suécia. O Tório foi observado como sendo radioativo, pela primeira vez, em 1898, pela física polaco-francesa, Marie Curie e palo químico Alemão Gerhard Carl Schmidt. O processo Van Arkel-de Boer foi descoberto em 1925, por Anton Eduard van Arkel and Jan Hendrik de Boer para produzir Tório metálico com alto grau de pureza.
Em 1900, William Crookes isolou o Protactínio como material muito radioativo do Urânio. O Protactínio foi identificado, pela primeira vez, por Kasimir Fajans e Oswald Helmuth Göhring, na Alemanha. Um isótopo mais estável do Protactínio foi descoberto, em 1917, por Otto Hahn e Lise Meitner, no Instituto Kaiser Wilhelm, em Berlim.
Em 1900, William Crookes isolou o Protactínio como material muito radioativo do Urânio. O Protactínio foi identificado, pela primeira vez, por Kasimir Fajans e Oswald Helmuth Göhring, na Alemanha. Um isótopo mais estável do Protactínio foi descoberto, em 1917, por Otto Hahn e Lise Meitner, no Instituto Kaiser Wilhelm, em Berlim.
O Urânio foi descoberto em 1789 pelo químico alemão Martin Heinrich Klaproth. Em 1841, Eugène-Melchior Péligot isolou a primeira amostra de metal Urânio, aquecendo tetracloreto de urânio, com potássio. Em 1896, Antoine Henri Becquerel descobriu a radioatividade, com recurso ao Urânio.
O Urânio foi descoberto em 1789 pelo químico alemão Martin Heinrich Klaproth. Em 1841, Eugène-Melchior Péligot isolou a primeira amostra de metal Urânio, aquecendo tetracloreto de urânio, com potássio. Em 1896, Antoine Henri Becquerel descobriu a radioatividade, com recurso ao Urânio.
O Neptúnio foi o primeiro elemento transuraniano sintético, do grupo dos actinídeos, a ser descoberto. O Neptúnio foi produzido pela primeira vez, por Edwin McMillan e Philip H. Abelson, em 1940, no então, Laboratório de Radiação de Berkeley, da Universidade da Califórnia. A equipa produziu o isótopo Neptúnio <sup>239</sup>Np, através do bombardeamento de urânio, com neutrões lentos.
O Neptúnio foi o primeiro elemento transuraniano sintético, do grupo dos actinídeos, a ser descoberto. O Neptúnio foi produzido pela primeira vez, por Edwin McMillan e Philip H. Abelson, em 1940, no então, Laboratório de Radiação de Berkeley, da Universidade da Califórnia. A equipa produziu o isótopo Neptúnio <sup>239</sup>Np, através do bombardeamento de urânio, com neutrões lentos.
O Plutónio foi produzido pela primeira vez em 1940, por Glenn T. Seaborg, Edwin M. McMillan, Joseph W. Kennedy e Arthur Wahl. O Pultónio-238 foi produzido, através do bombardeamento do deuterão de urânio-238 no ciclotrão de 152 cm, da Univerisdade da Califórnia, em Berkeley. A equipa de Berkley produziu neptúnio-238 que decaiu para Pultónio-238.
O Plutónio foi produzido pela primeira vez em 1940, por Glenn T. Seaborg, Edwin M. McMillan, Joseph W. Kennedy e Arthur Wahl. O Pultónio-238 foi produzido, através do bombardeamento do deuterão de urânio-238 no ciclotrão de 152 cm, da Univerisdade da Califórnia, em Berkeley. A equipa de Berkley produziu neptúnio-238 que decaiu para Pultónio-238.
O Amerício-241 foi identificado pela primeira vez, em 1944 por Glenn T. Seaborg, Ralph A. James, Leon O. Morgan e Albert Ghiorso no laboratório metalúrgico da Universidade de Chicago. Foi obtido, submetendo o Plutónio a radiação de Neutrões, durante o Projeto Manhattan! O Amerício foi isolado pela primeira vez, como composto puro por Burris Cunningham, em 1945, na Universidade de Chicago.
O Amerício-241 foi identificado pela primeira vez, em 1944 por Glenn T. Seaborg, Ralph A. James, Leon O. Morgan e Albert Ghiorso no laboratório metalúrgico da Universidade de Chicago. Foi obtido, submetendo o Plutónio a radiação de Neutrões, durante o Projeto Manhattan! O Amerício foi isolado pela primeira vez, como composto puro por Burris Cunningham, em 1945, na Universidade de Chicago.
O Cúrio foi descoberto por Glenn T. Seaborg, Ralph A. James and Albert Ghiorso, em 1944, na Universidade de Califórnia, em Berkeley. Foi produzido, através do bombardeamento de plutónio com partículas alfa, durante o Projeto Manhattan. O metal Cúrio apenas foi produzido em 1951, pela redução de fluoreto de Cúrio, com bário.
O Cúrio foi descoberto por Glenn T. Seaborg, Ralph A. James and Albert Ghiorso, em 1944, na Universidade de Califórnia, em Berkeley. Foi produzido, através do bombardeamento de plutónio com partículas alfa, durante o Projeto Manhattan. O metal Cúrio apenas foi produzido em 1951, pela redução de fluoreto de Cúrio, com bário.
O Berquélio foi descoberto por Glenn T. Seaborg, Albert Ghiorso e Stanley G. Thompson, em 1949 na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento de Amerício com partículas alfa. O Berquélio foi isolado em grande quantidade, pela primeira vez, por Burris Cunningham e Stanley Thompson, em 1958.
O Berquélio foi descoberto por Glenn T. Seaborg, Albert Ghiorso e Stanley G. Thompson, em 1949 na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento de Amerício com partículas alfa. O Berquélio foi isolado em grande quantidade, pela primeira vez, por Burris Cunningham e Stanley Thompson, em 1958.
O Califórnio foi descoberto por Stanley G. Thompson, Kenneth Street, Jr., Albert Ghiorso e Glenn T. Seaborg, em 1950, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Cúrio, com partículas alfa. O Califórnio foi isolado em grande quantidade, pela primeira vez, por Burris Cunningham e Stanley Thompson, em 1958.
O Califórnio foi descoberto por Stanley G. Thompson, Kenneth Street, Jr., Albert Ghiorso e Glenn T. Seaborg, em 1950, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Cúrio, com partículas alfa. O Califórnio foi isolado em grande quantidade, pela primeira vez, por Burris Cunningham e Stanley Thompson, em 1958.
O Einstéinio foi descoberto como um componente dos detritos da explosão da primeira bomba de Hidrogénio, em 1952. Foi identificado por Albert Ghiorso e colaboradores, na Universidade da Califórnia, em Berkeley, em colaboração com os Laboratórios Nacionais de Argonne e Los Alamos, na chuva radioativa do teste nuclear Ivy Mike. O novo elemento foi produzido, através da explosão nuclear em quantidades ínfimas, pela combinação de 15 neutrões ao Urânio-238.
O Einstéinio foi descoberto como um componente dos detritos da explosão da primeira bomba de Hidrogénio, em 1952. Foi identificado por Albert Ghiorso e colaboradores, na Universidade da Califórnia, em Berkeley, em colaboração com os Laboratórios Nacionais de Argonne e Los Alamos, na chuva radioativa do teste nuclear Ivy Mike. O novo elemento foi produzido, através da explosão nuclear em quantidades ínfimas, pela combinação de 15 neutrões ao Urânio-238.
O Férmio foi descoberto como um componente dos detritos da explosão da primeira bomba de Hidrogénio, em 1952. Foi identificado por Albert Ghiorso e colaboradores, na Universidade da Califórnia, em Berkeley, em colaboração com os Laboratórios Nacionais de Argonne e Los Alamos, na chuva radioativa do teste nuclear Ivy Mike. O novo elemento foi produzido, através da combinação de 17 neutrões com o Urânio-238.
O Férmio foi descoberto como um componente dos detritos da explosão da primeira bomba de Hidrogénio, em 1952. Foi identificado por Albert Ghiorso e colaboradores, na Universidade da Califórnia, em Berkeley, em colaboração com os Laboratórios Nacionais de Argonne e Los Alamos, na chuva radioativa do teste nuclear Ivy Mike. O novo elemento foi produzido, através da combinação de 17 neutrões com o Urânio-238.
O Mendelévio foi descoberto por Albert Ghiorso, Glenn T. Seaborg, Gregory R. Choppin, Bernard G. Harvey and Stanley G. Thompson, em 1955, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Einstéinio, com Hélio. O Mendelévio foi identificado por análise química, numa experiência de permuta iónica.
O Mendelévio foi descoberto por Albert Ghiorso, Glenn T. Seaborg, Gregory R. Choppin, Bernard G. Harvey and Stanley G. Thompson, em 1955, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Einstéinio, com Hélio. O Mendelévio foi identificado por análise química, numa experiência de permuta iónica.
O Nobélio foi descoberto por Albert Ghiorso, Glenn T. Seaborg, John R. Walton and Torbjørn Sikkeland, em 1955, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Cúrio, com átomos de Carbono. O Nobélio foi identificado corretamente, por cientistas, no Laboratórios de Reações Nucleares de Flerov, em Dubna, na União Soviética.
O Nobélio foi descoberto por Albert Ghiorso, Glenn T. Seaborg, John R. Walton and Torbjørn Sikkeland, em 1955, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Cúrio, com átomos de Carbono. O Nobélio foi identificado corretamente, por cientistas, no Laboratórios de Reações Nucleares de Flerov, em Dubna, na União Soviética.
O Laurêncio foi descoberto por Albert Ghiorso, Torbjørn Sikkeland, Almon Larsh and Robert M. Latimer, em 1961, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Califórnio, com átomos de Boro. O Laurêncio foi o último dos Actinídeos a ser descoberto.
O Laurêncio foi descoberto por Albert Ghiorso, Torbjørn Sikkeland, Almon Larsh and Robert M. Latimer, em 1961, na Universidade da Califórnia, em Berkeley. Foi produzido pelo bombardeamento do Califórnio, com átomos de Boro. O Laurêncio foi o último dos Actinídeos a ser descoberto.
O hidrogénio líquido é utilizado como combustível para foguetes. O hidrogénio é utilizado nas centrais elétricas como refrigerante, em geradores. Os dois isótopos mais pesados do hidrogénio (deutério e trítio) são utilizados na fusão nuclear. É empregue como gás protetor, em métodos de soldadura, como a soldagem a hidrogénio atómico.
O hidrogénio líquido é utilizado como combustível para foguetes. O hidrogénio é utilizado nas centrais elétricas como refrigerante, em geradores. Os dois isótopos mais pesados do hidrogénio (deutério e trítio) são utilizados na fusão nuclear. É empregue como gás protetor, em métodos de soldadura, como a soldagem a hidrogénio atómico.
O Hélio é usado como gás protetor na produção de cristais de silicone e germânio, na produção de titânio e zircónio e na cromatografia gasosa. A baixas temperaturas, o Hélio é utilizado em criogenia. O Hélio é usado para encher balões e pressurizar foguetes de combustível líquido. o Hélio é ainda utilizado como gás protetor na soldadura por arco elétrico.
O Hélio é usado como gás protetor na produção de cristais de silicone e germânio, na produção de titânio e zircónio e na cromatografia gasosa. A baixas temperaturas, o Hélio é utilizado em criogenia. O Hélio é usado para encher balões e pressurizar foguetes de combustível líquido. o Hélio é ainda utilizado como gás protetor na soldadura por arco elétrico.
O metal de Lítio puro é utilizado no fabrico de baterias recarregáveis de iões de lítio. O estearato de Lítio é empregue como lubrificante multiúsos e a altas temperaturas. O Lítio é usado em óculos especiais e na cerâmica. O Lítio metálico e os seus hidretos complexos, são utilizados como aditivos energéticos aos combustíveis dos foguetões.
O metal de Lítio puro é utilizado no fabrico de baterias recarregáveis de iões de lítio. O estearato de Lítio é empregue como lubrificante multiúsos e a altas temperaturas. O Lítio é usado em óculos especiais e na cerâmica. O Lítio metálico e os seus hidretos complexos, são utilizados como aditivos energéticos aos combustíveis dos foguetões.
O óxido de Boro é utilizado em hialurgia e cerâmica. O bórax é empregue no fabrico de fibra de vidro, como óleo de limpeza, purificador de água, inseticida, herbicida e desinfetante. O ácido bórico é usado como antissético suave e como substância antifogo. Placas protetoras de Boro são utilizadas para controlo, em reatores nucleares.
O óxido de Boro é utilizado em hialurgia e cerâmica. O bórax é empregue no fabrico de fibra de vidro, como óleo de limpeza, purificador de água, inseticida, herbicida e desinfetante. O ácido bórico é usado como antissético suave e como substância antifogo. Placas protetoras de Boro são utilizadas para controlo, em reatores nucleares.
À parte dos alimentos e da madeira, o Carbono é maioritariamente consumido sob a forma de hidrocarbonetos, nomeadamente, os combustíveis fósseis metano e crude. É utilizado, na sua forma de grafite, no fabrico de lápis, cadinhos, pilhas elétricas, elétrodos e lubrificante. Os diamantes são usados em joalharia e na indústria de corte, perfuração, moagem e polimento. O carbono preto é empregue na cor preta da tinta de impressão.
À parte dos alimentos e da madeira, o Carbono é maioritariamente consumido sob a forma de hidrocarbonetos, nomeadamente, os combustíveis fósseis metano e crude. É utilizado, na sua forma de grafite, no fabrico de lápis, cadinhos, pilhas elétricas, elétrodos e lubrificante. Os diamantes são usados em joalharia e na indústria de corte, perfuração, moagem e polimento. O carbono preto é empregue na cor preta da tinta de impressão.
O Nitrogénio é utilizado na produção de amónia e fertilizantes, fundamentais nos processos atuais de produção de alimentos. O Nitrogénio líquido é usado como refrigerante. O ácido nítrico serve de agente oxidante, em foguetes de combustível líquido. O Nitrogénio é um dos constituintes de moléculas em todas as principais classes de medicamentos utilizados em farmacologia e medicina.
O Nitrogénio é utilizado na produção de amónia e fertilizantes, fundamentais nos processos atuais de produção de alimentos. O Nitrogénio líquido é usado como refrigerante. O ácido nítrico serve de agente oxidante, em foguetes de combustível líquido. O Nitrogénio é um dos constituintes de moléculas em todas as principais classes de medicamentos utilizados em farmacologia e medicina.
O Oxigénio puro é utilizado frequentemente para ajudar pacientes com doenças respiratórias, a manter a função pulmonar. O Oxigénio é utilizado na soldadura oxiacetilénica; como oxidante, em combustível para foguetes e na produção do metanol e óxido de etileno. É também empregue na produção de aço, plástico e têxteis. As plantas e os animais precisam do Oxigénio para respirar.
O Oxigénio puro é utilizado frequentemente para ajudar pacientes com doenças respiratórias, a manter a função pulmonar. O Oxigénio é utilizado na soldadura oxiacetilénica; como oxidante, em combustível para foguetes e na produção do metanol e óxido de etileno. É também empregue na produção de aço, plástico e têxteis. As plantas e os animais precisam do Oxigénio para respirar.
Os compostos de Flúor, incluindo o fluoreto de sódio, são utilizados na produção de pasta dentífrica e na água corrente, para prevenir cáries. Os hidroclorofluorcabonetos (HCFCs) e os hidrofluorcabonetos (HFCs) substituem, atualmente, os clorofluorcarbonetos (CFC) refrigerantes. O Flúor e os seus compostos são empregues no tratamento de combustível nuclear.
Os compostos de Flúor, incluindo o fluoreto de sódio, são utilizados na produção de pasta dentífrica e na água corrente, para prevenir cáries. Os hidroclorofluorcabonetos (HCFCs) e os hidrofluorcabonetos (HFCs) substituem, atualmente, os clorofluorcarbonetos (CFC) refrigerantes. O Flúor e os seus compostos são empregues no tratamento de combustível nuclear.
O Néon é frequentemente utilizado em sinais publicitários. É também utilizado em válvulas termiónicas, testadores de alta voltagem, para-raios, medidores de onda, tubos de raios catódicos, e lasers de Hélio-Néon. O Néon líquido é utilizado como refrigerante criogénico.
O Néon é frequentemente utilizado em sinais publicitários. É também utilizado em válvulas termiónicas, testadores de alta voltagem, para-raios, medidores de onda, tubos de raios catódicos, e lasers de Hélio-Néon. O Néon líquido é utilizado como refrigerante criogénico.
O Sódio metálico é essencial na produção de ésteres e na preparação de compostos orgânicos. Nas cidades, as lâmpadas de vapor de Sódio são frequentemente utilizadas na iluminação da via pública. O Sódio líquido é utilizado como fluído de transferência térmica, em certos reatores rápidos. O Sódio é também utilizado como metal em ligas, servindo como agente de limpeza e redutor de metais, quando outras substâncias se revelam ineficazes.
O Sódio metálico é essencial na produção de ésteres e na preparação de compostos orgânicos. Nas cidades, as lâmpadas de vapor de Sódio são frequentemente utilizadas na iluminação da via pública. O Sódio líquido é utilizado como fluído de transferência térmica, em certos reatores rápidos. O Sódio é também utilizado como metal em ligas, servindo como agente de limpeza e redutor de metais, quando outras substâncias se revelam ineficazes.
O Magnésio é usado em larga escala, no fabrico de telemóveis, computadores portáteis, câmaras e componentes eletrónicos. A luz brilhante por ele produzida, quando é usada em fotografia, sinalização e pirotecnia. Os compostos de Magnésio como o hidróxido (leite de Magnésio), o sulfato (sal de Epsom), o cloreto e o citrato são usados para fins medicinais.
O Magnésio é usado em larga escala, no fabrico de telemóveis, computadores portáteis, câmaras e componentes eletrónicos. A luz brilhante por ele produzida, quando é usada em fotografia, sinalização e pirotecnia. Os compostos de Magnésio como o hidróxido (leite de Magnésio), o sulfato (sal de Epsom), o cloreto e o citrato são usados para fins medicinais.
O Alumínio é empregue numa vasta gama de produtos desde latas de bebidas, a caixilharia; de barcos a aeronaves. É usado em linhas de transmissão elétrica. É também utilizado no fabrico de utensílios de cozinha, decoração exterior e em milhares de aplicações industriais. Quando ligado com pequenas quantidades de cobre, magnésio, silício, manganês, confere uma variedade de propriedades úteis.
O Alumínio é empregue numa vasta gama de produtos desde latas de bebidas, a caixilharia; de barcos a aeronaves. É usado em linhas de transmissão elétrica. É também utilizado no fabrico de utensílios de cozinha, decoração exterior e em milhares de aplicações industriais. Quando ligado com pequenas quantidades de cobre, magnésio, silício, manganês, confere uma variedade de propriedades úteis.
O Silício, na sua forma de areia e argila é usado para produzir betão e tijolo; servindo de material refratário, para trabalhos a altas temperaturas e na sua forma de silicato é empregue na produção de esmalte, cerâmica, etc. A Sílica da areia é o principal componente do vidro. Os processadores de Silício estão na base da eletrónica e computação modernas. O carboneto de Silício, mais conhecido como carborundo, é usado em abrasivos.
O Silício, na sua forma de areia e argila é usado para produzir betão e tijolo; servindo de material refratário, para trabalhos a altas temperaturas e na sua forma de silicato é empregue na produção de esmalte, cerâmica, etc. A Sílica da areia é o principal componente do vidro. Os processadores de Silício estão na base da eletrónica e computação modernas. O carboneto de Silício, mais conhecido como carborundo, é usado em abrasivos.

Periodic Table invites you to become a translator to help them translate their Element Details project.

Sign up for free or login to start contributing.